Pandit Deendayal Energy University

		Tooching Schomo					Hydrogen and C ₁ Technologies (22PCM210T)					
	reacting scheme						Examination Scheme					
		т	Р	С	Hours/Week	Theory			Practical		Total Marks	
	L					MS	ES	IA	LW	LE/Viva		
Ī	2	0	0	2	2	25	50	25			100	

COURSE OBJECTIVES

- > Get a clear idea about the petrochemical Industry, its structure and constitutions.
- > Understand the requirements of feedstocks for the production of hydrogen and synthesis gas.
- Study the various processes to produce hydrogen from hydrocarbons.
- > Understand C₁ based technologies emphasizing on methanol synthesis
- > Understand and evaluate methanol economy and futuristic C₁ technologies.

Unit I: Petrochemical industry its structure and feedstocks

Nature of petrochemicals: C₁, olefin and aromatic complexes; Petroleum feedstocks for production of hydro-gen and synthesis gas, types of synthesis gas and their applications; Production of hydrogen by elec- trolysis of water and its transportation.

Unit II: Hydrogen production and purification

Steam reforming of hydrocarbons: Reactions, catalysts and processes; Arrangement of steam reformer: Low temperature and high temperature shift convertors and operating conditions; Auto-thermal reforming; Water gas shift reaction, production of hydrogen by partial oxidation, reactions and technology; Purification of hydrogen.

Unit III: Production of C₁ petrochemicals

Scope of C₁ petrochemicals; Production of carbon mono oxide and its purification; Methane and its purification; Synthesis of Methanol: Chemistry, thermodynamics, kinetics and catalysis; Processes of methanol production; Synthesis of chloro-methanes and production processes; Methanol derivatives: Formaldehyde, MTBE, etc.

Unit IV Modern developments in C1 technologies

Methanol economy, general outlook; Fischer-Tropsch synthesis: Its scope, chemistry, catalysis, product profile and technologies; Methanol to gasoline processes.

COURSE OUTCOMES

On completion of the course, student will be able to

- **CO1**: Understand the structure of petrochemical processes.
- **CO2**: Understand and realise the effect of feedstocks on petrochemical processes.
- **CO3**: Analyse the effect of various factors on hydrogen and synthesis gas production.
- $\textbf{CO4}: Illustrate the importance of C_1 technologies.$
- **CO5**: Evaluate the various technologies for methanol and its derivatives.
- **CO6**: Design and apply concepts to the recent developments in C_1 technologies.

TEXT/REFERENCE BOOKS

- 4. Moulijn, J., Makkee, M. and Van Diepen, A. "Chemical Process Technology", 2nd Edition, Wiley, (2013).
- 5. Chauvel, A. and Lefebvre, G., "Petrochemical Processes I", Technip, (2001).

8 Hr.

6 Hr.

Total 28 Hr.

6 Hr.

8 Hr.

B. Tech. Petrochemical Engineering /SPT

6. Olah, G.A. Goeppert, A. and Prakash, G.K.S., "Beyond Oil and Gas: The Methanol Economy", 3rd Edition, Wiley VCH, (2018).

END SEMESTER EXAMINATION QUESTION PAPER PATTERN Max. Marks: 100

Part A: 10 Questions each carrying 5 marks Part B: 5 Questions each carrying 10 marks Exam Duration: 3 Hr. 50 Marks 50 Marks